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Motivation: the model risk

Major stake of last century for financial mathematics:
pricing exotic derivatives.
In practice the price is given by EP[payoff], with P
martingale model fitting the prices of vanilla derivatives.
Problem: two models P1 and P2 give two prices!
Question: what is the maximal possible price?
Martingale Optimal Transport problem: supP EP[payoff].
Understand the model risk and find riskless strategies.

Figure: Jean-Michel, binary options trader.
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The Monge optimal transport problem

Originally a soil moving problem for building from Monge [22].

inf
T :X−→Y

T #µ=ν

∫
X
|T (x)− x |µ(dx).

(a) The Monge problem
illustrated. (b) The cost of moving bricks.

Figure: Mass moving and cost of moving it.
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Probabilistic optimal transport

Kantorovitch [16] made this problem probabilistic.

Ω = Rd × Rd

X and Y the two canonical random variables Ω→ Rd ,
X : (x , y) 7→ x and Y : (x , y) 7→ y .
P(µ, ν) := {P ∈ P(Ω) : P ◦ X−1 = µ, P ◦ Y−1 = ν}, set
of all coupling probability laws between µ and ν.

Definition
The optimal transport problem is:

P = inf
P∈P(µ,ν)

EP[c(X ,Y )
]
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Useful cost functions

(x , y) 7→ d(x , y) where d(·, ·) is a distance.
(x , y) 7→ |x − y |2

(x , y) 7→ |x − y |

Definition
We define the p-Wasserstein distance for p ≥ 1: for
µ, ν ∈ P(Rd ),

W p(µ, ν) :=
(

inf
P∈P(µ,ν)

EP[|X − Y |p]
) 1

p

(P(Rd ),W p) is a Polish space.
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The dual problem

For ϕ,ψ : Rd −→ Rd , let ϕ⊕ ψ : (x , y) 7−→ ϕ(x) + ψ(y).

Definition
The dual problem is

D := sup
ϕ⊕ψ≤c

µ[ϕ] + ν[ψ]

Remark
If ϕ⊕ ψ ≤ c and P ∈ P(µ, ν) then

µ[ϕ] + ν[ψ] = EP[ϕ⊕ ψ] ≤ EP[c].

Therefore, D ≤ P.
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Kantorovitch Duality

The parallel study of these two problems is justified by the
following theorem (see Villani 2008 [25])

Theorem
If the cost c is lower semicontinuous, then

Strong duality holds: P = D.
There are optimizers ϕ∗, ψ∗ for D and P∗ ∈ P(µ, ν) for P.

Proposition
P ∈ P(µ, ν) is concentrated on
Γ := {ϕ∗(X ) + ψ∗(Y ) = c(X ,Y )} if and only if it is optimal.
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Structure of Optimal Transport

Theorem
If y 7→ ∂xc(x , y) is injective,
then P∗[Y = T (X )] = 1 with T (x) = ∂xc(x , ·)−1(∇ϕ∗(x))

Idea of the proof:
∆(x , y) := c(x , y)− ϕ∗(x)− ψ∗(y) ≥ 0,
∆(x , y) = 0 if (x , y) ∈ Γ = suppP∗.
Then ∂x ∆(x , y) = 0 if (x , y) ∈ Γ.
∂xc(x , y) = ∇ϕ∗(x).
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Change in the Primal and the Dual Problems

Definition
The martingale optimal transport problem and its dual are:

P = sup
P∈M(µ,ν)

EP[c(X ,Y )
]
,

and
D := inf

ϕ⊕ψ+h⊗≥c
µ[ϕ] + ν[ψ].

With M(µ, ν) := {P ∈ P(µ, ν) s.t. EP[Y |X ] = X , a.s.} and

h⊗ := h(X ) · (Y − X ), for h : Rd −→ Rd .
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Binary optimal models for specific cost functions

Beiglböck-Juillet [3], and Henry-Labordère-Touzi [15].

Theorem
We suppose that d = 1, µ << Leb and that ∂xyyc > 0. Then

Card(suppPX ) ≤ 2.

Γ =
{(

x ,Td (x)
)
,
(
x ,Tu(x)

)
/x ∈ R

}
Numerical solving possible.
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Graphical interpretation

∂xc(x , y) = ∇h(x)y+∇ϕ(x)−h(x)−∇h(x)x , for
(x , y) ∈ Γ.
y in the intersection of an affine map with the graph of
∂xc(x , ·).
Martingale Spence-Mirless condition: ∂xyyc > 0, i.e. ∂xc
strictly convex.

y

@xc(x; y)

Td(x) Tu(x)

Figure: Structure of Γx .
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The left-curtain coupling

Figure: Left-curtain coupling.
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Conjecture on higher dimension

For d = 1, the conditional optimal transports are
supported on 2 = d + 1 points.
As the optimal plans are extreme in M(µ, ν), we may
conjecture that the optimal plans are supported on d + 1
points.
d + 1 points convenient for using Partial Differential
Equation methods.
Ghoussoub-Kim-Lim [11] conjecture d + 1 points.
Models for complete markets: d + 1 points.
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Structure theorem

DM 2018 [10].

Theorem
(i) Under Assumption, we may find (Ax )x∈Rd ⊂ Affd such that
for all P∗ ∈M(µ, ν) optimal for MOT,

supp P∗x ⊂ {∂xc(x ,Y ) = Ax (Y )}, for µ− a.e. x ∈ Rd .

(ii) Conversely, let S0 ⊂ {∂xc(x0,Y ) = A(Y )}, then under
assumptions we may find µ0, ν0 ∈ P(Rd ) such that

P∗(dx , dy) := µ0(dx)
k∑

i=1
λi (x)δTi (x)(dy)

is the unique solution to MOT, and S0 = {Ti (x0) : 1 ≤ i ≤ k}.
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Link with algebraic geometry

Taylor: ∂xc(x0, y) ≈
∑
|j|≤k

1
|i |!∂x ,y j c(x0, y0)(y − y0)j .

∂xc(x0, y) = A(y) is locally P1(y) = 0, ...,Pd (y) = 0, with
Pi :=

∑
|j|≤k

1
|i |!∂xi ,y j c(x0, y0)(Y − y0)j − Ai (Y )

Algebraic geometry problem.
No a priori information about A: k ≥ 2, at infinity
Pi ≈

∑
|j|=k

1
|i |!∂xi ,y j c(x0, y0)(Y − y0)j .

Example: αY 2 − A(Y ) has 2 roots for all A if and only if
αY 2 6= 0.
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Family of polynomial complete at infinity

Definition
We say that the family (P1, ...,Pd ) is ∞−complete if

QPhom
i /∈ 〈Phom

1 , ...,Phom
i−1 〉, for all Q /∈ 〈Phom

1 , ...,Phom
i−1 〉.

where < Phom
1 , ...,Phom

i−1 > is the ideal generated by the
homogeneous part of P1, ...,Pi−1.

Remark
Polynomial equation system T ∈ R

[
(Xi ,j)1≤i≤d ,j∈(N∗)d :|j|≤ki

]
such that for Pi =

∑
j∈(N∗)d :|j|≤ki ai ,jX j1

1 ...X
jd
d , we have

T
(
(ai ,j)1≤i≤d ,|j|≤ki

)
6= 0 ⇐⇒ (P1, ...,Pd ) is ∞−complete.
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Criterion of discreteness

Theorem (Bezout)

Let d ∈ N and P1, ...,Pd ∈ R[X1, ...,Xd ] be ∞−complete.
Then |Zproj(P1, ...,Pd )| = deg(P1)...deg(Pd ), counted with
multiplicity.

Theorem
If (
∑
α∈Nd , |α|=ki ∂yαc(x0, y0)Y α)1≤i≤d is ∞−complete for all

y0, then S0 = {∂xc(x0,Y ) = A(Y )} is discrete.

Remark
Warning: c := f (|X − Y |) not second order ∞−complete.



MOT

Hadrien De
March

Motivation

Optimal
transport

Martingale
optimal
transport

Local
structure of
optimal
martingale
plans

Numerical
methods for
optimal
transport

New results
for numerical
MOT

An illustrative example

Example
Let c : (x , y) ∈ R2 × R2 7−→ x1(y21 + 2y22 ) + x2(2y21 + y22 ).
Then ∂xc(x , y) = (y21 + 2y22 )e1 + (2y21 + y22 )e2. Let
A ∈ Aff(R2,R2), A = A1e1 + A2e2. The equation
∂xc(x0, y) = A(y) can be written{

y21 + 2y22 = A1(e1)y1 + A1(e2)y2 + A1(0)
2y21 + y22 = A2(e1)y1 + A2(e2)y2 + A2(0).

e1

e2

C2

C1

y1 y2

y3
y
0

x0

Figure: Solution of ∂xc(x0,Y ) = A(Y ) for
c(x , y) = x1(y21 + 2y22 ) + x2(2y21 + y22 ).
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Minimal number of mappings for smooth cost

Theorem
Let c : Ω −→ R be second order complete at infinity and
C2,0 ∩ C1,2 in the neighborhood of (x0, x0) for some x0 ∈ Rd .
Then, we may find µ0, ν0 ∈ P(Rd ) such that the optimal
coupling P∗ ∈M(µ0, ν0) is unique and

|supp P∗X | = Nc(x0), µ− a.s.

Nc(x0) := sup
P∈R1[Y1,...,Yd ]d

∣∣Z 1
R(Hc(x0) + P)

∣∣,
where Hc(x0) :=

∑
i ,j ∂x ,yi yj c(x0, x0)YiYj .
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Value of Nc(x0)

Theorem
Let x0 ∈ Rd , and c second order ∞−complete in (x0, x0) and
C1,2 at (x0, x0), then

d + 1 + 1{d even} ≤ Nc(x0) ≤ 2d .

Conjecture: Nc(x0) = 2d for all second order complete at
infinity c.
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The case of the distance cost

Theorem
Let c(X ,Y ) := |X − Y |p. Let S0 := {∂xc(x0,Y ) = A(Y )}, for
some x0 ∈ int conv S0, and A ∈ Aff(Rd ,Rd ).
(i) p ≤ 1: S0 contains 2d possibly degenerate points counted
with multiplicity;
(ii) p > 1, S0 contains 2d + 1 possibly degenerate points
counted with multiplicity.

Degenerate points consist in 2k points with the same distance
to x0, then we replace these points with a k − 1 dimensional
sphere containing these points.
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Limit: disintegration of the Lebesgue measure

Assumption the the local structure result: µI dominated
by Lebesgue.
Invalid argument: the Sudakov mistake and the Nikodym
set.
Further work: prove that this cannot happen.

y2(2 + δ)

y1(2 + δ)

y3(2 + δ)

x1(1− δ; 2 + δ)

x3(1− δ; 2 + δ)

z2(1− δ)

z1(1− δ)

z3(1− δ)

x2(1− δ; 2 + δ)

P
1−δ;2+δ

1P
1−δ;2+δ

2 CP1

1

CP1

2

CP1

3

C
P

0

1

1C
P

0

1

2

C
P

0

1

3

I

Figure: Three disjoint clusters in one single irreducible component.
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Existing methods in literature

Linear programming: the Hungarian method [18], the
auction algorithm [7], the network simplex [1], [12]...
Polynomial time: only suited for small sized problems.
Stochastic control: Benhamou & Brenier [4].
Monge-Ampère: detD2u = g◦cx (X ,·)−1◦∇u

f , where f is the
density of µ and g is the density of ν: see [6] and [5].
Semi-discrete approach Merigot [21], or Levy [20].
Very fast but only works for specific (while relevant) costs.
Entropic approach: Leonard [19], Marco Cuturi [8].
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Numerical resolution: the entropic approach

Adding regularity thanks to an entropic penalization.
Pε := infP∈P(µ,ν) P[c]+εH(P),
with H(P) :=

∑
(x ,y)∈X×Y

(
lnP(x , y)− 1

)
P(x , y).

Gibbs shaped solution:
P =

∑
x ,y exp

(
− c(x ,y)−ϕ(x)−ψ(y)

ε

)
δ(x ,y)

Dual problem:

Dε := sup
(ϕ,ψ)

µ[ϕ]+ν[ψ]−ε
∑
x ,y

exp
(
−c(x , y)− ϕ(x) + ψ(y)

ε

)
.
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The Sinkhorn algorithm

Smooth concave operator
Vε(ϕ,ψ) := µ[ϕ] + ν[ψ]− ε

∑
x ,y exp

(
− c(x ,y)−ϕ(x)−ψ(y)

ε

)
.

Euler-Lagrange equations ∂ϕVε = 0 (resp. ∂ψVε = 0)
equivalent to the marginal relations P ◦ X−1 = µ (resp.
P ◦ Y−1 = ν).
Marco Cuturi [8] gives the closed formulas:
ϕ(x) = −ε ln

(
1
µx

∑
y exp

(
− c(x ,y)−ψ(y)

ε

))
, and

ψ(y) = −ε ln
(

1
νy

∑
x exp

(
− c(x ,y)−ϕ(x)

ε

))
.

Iterating these partial optimization: Sinkhorn algorithm
[23], equivalent to a block optimization of Vε.
Converges exponentially fast, see Knight [17].
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Existing litterature for numerical solving of MOT

Henry-Labordère [14]: dual linear programming techniques
for specific cost functions so that the dual constraints are
much easier to check.
Alfonsi, Corbetta & Jourdain [2]: difficulty to get a
discrete approximation of continuous marginals in convex
order, that are still in convex order in higher dimension.
Guo & Oblój [13]: provide convergence results of the
discrete problem to the continuous problem
[13] provides an equivalent of the Sinkhorn algorithm for
one dimensional MOT.
Tan & Touzi [24]: used a dynamic programming approach
to solve a continuous-time version of MOT.
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Entropic framework for MOT

DM 2018 [9].

Pε := supP∈M(µ,ν)P[c]− εH(P)

= Dε := inf
(ϕ,ψ,h)

µ[ϕ]+ν[ψ]+ε
∑
x ,y

exp
(
−ϕ⊕ ψ+h⊗ − c

ε

)
(x , y).

We denote ∆ := ϕ⊕ ψ + h⊗ − c.
The optimal coupling probability becomes
P :=

∑
x ,y exp

(
−∆(x ,y)

ε

)
δ(x ,y).

the convex function to minimize becomes
Vε(ϕ,ψ, h) := µ[ϕ] + ν[ψ] + ε

∑
x ,y exp

(
−∆(x ,y)

ε

)
.
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The martingale Sinkhorn algorithm

Sinkhorn algorithm completed by another step for the
martingale relation: 0 = 1

µx

∑
y exp

(
−∆(x ,y)

ε

)
(y − x)

= ε
µx

∂
∂h(x)

∑
y exp

(
−∆(x ,y)

ε

)
= 1

µx
∂

∂h(x)Vε.
Martingale step not closed form: Newton algorithm for the
smooth strongly convex function Fx of d variables given by

Fx (h) := ε

µx

∑
y

exp
(
−∆(x , y)

ε

)
,

∇Fx (h) = 1
µx

∑
y

exp
(
−∆(x , y)

ε

)
(y − x),

D2Fx (h) = 1
µxε

∑
y

exp
(
−∆(x , y)

ε

)
(y − x)⊗ (y − x).
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Implied conjugate gradient Newton algorithm

The optimization in h is costly.
Newton algorithm: xn+1 − xn = −D2V (xn)−1∇V (xn).
Matrix inverting not adapted to high dimension.
Conjugate gradient algorithm: find p such that
|D2V (xn)p −∇V (xn)| ≤ o(|∇V (xn)|).
Exploiting the closed formulas: if Vε is α−convex, so does
Ṽε(ψ) := minϕ,h Vε(ϕ,ψ, h).
Optimization on Ṽε by Newton conjugate gradient: much
faster and much more stable.
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Comparing the algorithms

Figure 7a compares these algorithms, for a grid size 2500,
with the cost function XY 2.
Figure 7b compares then on a 160× 160 grid, for
c : (x , y) ∈ R2 × R2 7−→ x1(y21 + 2y22 ) + x2(2y21 + y22 ).
Newton efficient close to the optimum, and Sinkhorn gets
close by closed formulas: we design an hybrid algorithm.

(a) Dimension 1. (b) Dimension 2.

Figure: Log-size of the gradient VS time for the Bregman projection
algorithm, the Newton algorithm, and the Hybrid algorithm.
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The shapes of optimal transport

(a) c = XY 2. (b) c = |X − Y |. (c) c = sin(8XY ).

Figure: Optimal coupling for different costs in dimension one.

(a) X = −(0.45, 0.65) (b) X = (0.3,−0.66) (c) X = (0.2, 0.44) (d) X = (0.13, 0.16)

Figure: Optimal coupling conditioned to several values of X .
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Default of convex order

We consider the α−penalized problem:

min
ψ∈RY

Ṽε(ψ) + αf (ψ). (6.1)

f super-linear, strictly convex, homogeneous: enhances
speed and stability.

Theorem
Let (µ, ν) ∈ P(X )× P(Y) not in convex order. Let
να := Pα ◦ Y−1, where Pα is the optimal probability for
Problem (6.1). Then να −→ νl when α −→ 0, for some
νl �c µ satisfying

f ∗(νl − ν) = min
ν̃�cµ

f ∗(ν̃ − ν).
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Entropy error

In the litterature the theoretical error linked to entropy is bad:
O
(
ε log(grid size)

)
. Up to making uncheckable assumptions,

we get a surprisingly universal and much better result.

Theorem
If
(i) ∆ε := ϕε ⊕ ψε + h⊗ε − c is C2;
(iii) cardZ εx = dimZ εx + 1, where Z εx := {∆ε(x ,Y ) ≈ 0};
(vi) the step of the Y−grid is o(

√
ε).

Then µε
[

(c(X ,·)−ψε)conc (X)
]

+νε[ψε]−Pε[c]
ε −→ d

2 when ε −→∞.

Corollary
Under the assumptions of Theorem 17, we have that
Pε[c] ≥ Sµ,ν(c)− d

2 ε+ o(ε), when ε −→ 0.
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Numerical entropy error

(a) Dimension 1. (b) Dimension 2.

Figure: Duality gap for the supremum, and the concave hull dual
approximation vs ε.
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Questions?

Figure: Optimal transport in practice.
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